On the readability of leaders in boundary labeling

Abstract

External labeling deals with annotating features in images with labels that are placed outside of the image and are connected by curves (so-called leaders) to the corresponding features. While external labeling has been extensively investigated from a perspective of automatization, the research on its readability has been neglected. In this article, we present the first formal user study on the readability of leader types in boundary labeling, a special variant of external labeling that considers rectangular image contours. We consider the four most studied leader types (straight, L-shaped, diagonal, and S-shaped) with respect to their performance, that is, whether and how fast a viewer can assign a feature to its label and vice versa. We give a detailed analysis of the results regarding the readability of the four models and discuss their aesthetic qualities based on the users’ preference judgments and interviews. As a consequence of our experiment, we can generally recommend L-shaped leaders as the best compromise between measured task performance and subjective preference ratings, while straight and diagonal leaders received mixed ratings in the two measures. S-shaped leaders are generally not recommended from a practical point of view.

Publication
Information Visualization, 18(1)
Avatar
Lukas Barth
Algorithmics Researcher